1,888 research outputs found

    A simple model to interpret the ultraviolet, optical and infrared SEDs of galaxies

    Full text link
    We present a simple, largely empirical but physically motivated model, which is designed to interpret consistently multi-wavelength observations from large samples of galaxies in terms of physical parameters, such as star formation rate, stellar mass and dust content. Our model is both simple and versatile enough to allow the derivation of statistical constraints on the star formation histories and dust contents of large samples of galaxies using a wide range of ultraviolet, optical and infrared observations. We illustrate this by deriving median-likelihood estimates of a set of physical parameters describing the stellar and dust contents of local star-forming galaxies from the Spitzer Infrared Nearby Galaxy Sample (SINGS) and from a newly-matched sample of SDSS galaxies observed with GALEX, 2MASS, and IRAS. The model reproduces well the observed spectral energy distributions of these galaxies across the entire wavelength range from the far-ultraviolet to the far-infrared. We find important correlations between the physical parameters of galaxies which are useful to investigate the star formation activity and dust properties of galaxies. Our model can be straightforwardly applied to interpret observed ultraviolet-to-infrared spectral energy distributions (SEDs) from any galaxy sample.Comment: 4 pages, 3 figures, to appear in the Conference Proceedings of IAU Symposium No. 262: Stellar Populations - Planning for the Next Decade, G. Bruzual & S. Charlot ed

    The K-band luminosity function at z=1: a powerful constraint on galaxy formation theory

    Get PDF
    There are two major approaches to modelling galaxy evolution. The traditional view is that the most massive galaxies were assembled early and have evolved with steeply declining star formation rates since a redshift of 2 or higher. According to hierarchical theories, massive galaxies were assembled much more recently from mergers of smaller subunits. Here we present a simple observational test designed to differentiate between the two. The observed K-band flux from a galaxy is a good measure of its stellar mass even at high redshift. It is probably only weakly affected by dust extinction. We compute the evolution of the observed K-band luminosity function for traditional, pure luminosity evolution (PLE) models and for hierarchical models. At z=0, both models can fit the observed local K-band luminosity function. By redshift 1, they differ greatly in the predicted abundance of bright galaxies. We calculate the redshift distributions of K-band selected galaxies and compare these with available data. We show that the number of K<19 galaxies with redshifts greater than 1 is well below the numbers predicted by the PLE models. In the Songaila et al (1994) redshift sample of 118 galaxies with 16<K<18, 33 galaxies are predicted to lie at z>1. Only 2 are observed. In the Cowie et al. (1996) redshift sample of 52 galaxies with 18<K<19, 28 galaxies are predicted to lie at at z>1. Only 5 are observed. Both these samples are more than 90% complete. We conclude that there is already strong evidence that the abundance of massive galaxies at z=1 is well below the local value. This is inconsistent with the traditional model, but similar to the expectations of hierarchical models.Comment: 13 pages, Latex, 4 figures included in text, submitted to MNRAS pink page

    Timing the starburst-AGN connection

    Full text link
    The mass of super massive black holes at the centre of galaxies is tightly correlated with the mass of the galaxy bulges which host them. This observed correlation implies a mechanism of joint growth, but the precise physical processes responsible are a matter of some debate. Here we report on the growth of black holes in 400 local galactic bulges which have experienced a strong burst of star formation in the past 600Myr. The black holes in our sample have typical masses of 10^6.5-10^7.5 solar masses, and the active nuclei have bolometric luminosities of order 10^42-10^44erg/s. We combine stellar continuum indices with H-alpha luminosities to measure a decay timescale of ~300Myr for the decline in star formation after a starburst. During the first 600Myr after a starburst, the black holes in our sample increase their mass by on-average 5% and the total mass of stars formed is about 1000 times the total mass accreted onto the black hole. This ratio is similar to the ratio of stellar to black hole mass observed in present-day bulges. We find that the average rate of accretion of matter onto the black hole rises steeply roughly 250Myr after the onset of the starburst. We show that our results are consistent with a simple model in which 0.5% of the mass lost by intermediate mass stars in the bulge is accreted by the black hole, but with a suppression in the efficiency of black hole growth at early times plausibly caused by supernova feedback, which is stronger at earlier times. We suggest this picture may be more generally applicable to black hole growth, and could help explain the strong correlation between bulge and black hole mass.Comment: 16 pages, 12 figures, accepted for publication in MNRA

    Modelling the nebular emission from primeval to present-day star-forming galaxies

    Full text link
    We present a new model of the nebular emission from star-forming galaxies in a wide range of chemical compositions, appropriate to interpret observations of galaxies at all cosmic epochs. The model relies on the combination of state-of-the-art stellar population synthesis and photoionization codes to describe the ensemble of HII regions and the diffuse gas ionized by young stars in a galaxy. A main feature of this model is the self-consistent yet versatile treatment of element abundances and depletion onto dust grains, which allows one to relate the observed nebular emission from a galaxy to both gas-phase and dust-phase metal enrichment. We show that this model can account for the rest-frame ultraviolet and optical emission-line properties of galaxies at different redshifts and find that ultraviolet emission lines are more sensitive than optical ones to parameters such as C/O abundance ratio, hydrogen gas density, dust-to-metal mass ratio and upper cutoff of the stellar initial mass function. We also find that, for gas-phase metallicities around solar to slightly sub-solar, widely used formulae to constrain oxygen ionic fractions and the C/O ratio from ultraviolet and optical emission-line luminosities are reasonable faithful. However, the recipes break down at non-solar metallicities, making them inappropriate to study chemically young galaxies. In such cases, a fully self-consistent model of the kind presented in this paper is required to interpret the observed nebular emission.Comment: 20 pages, 15 figures, Accepted for publication in MNRA

    Theoretical Predictions for Surface Brightness Fluctuations and Implications for Stellar Populations of Elliptical Galaxies

    Full text link
    (Abridged) We present new theoretical predictions for surface brightness fluctuations (SBFs) using models optimized for this purpose. Our predictions agree well with SBF data for globular clusters and elliptical galaxies. We provide refined theoretical calibrations and k-corrections needed to use SBFs as standard candles. We suggest that SBF distance measurements can be improved by using a filter around 1 micron and calibrating I-band SBFs with the integrated V-K galaxy color. We also show that current SBF data provide useful constraints on population synthesis models, and we suggest SBF-based tests for future models. The data favor specific choices of evolutionary tracks and spectra in the models among the several choices allowed by comparisons based on only integrated light. In addition, the tightness of the empirical I-band SBF calibration suggests that model uncertainties in post-main sequence lifetimes are less than +/-50% and that the IMF in ellipticals is not much steeper than that in the solar neighborhood. Finally, we analyze the potential of SBFs for probing unresolved stellar populations. We find that optical/near-IR SBFs are much more sensitive to metallicity than to age. Therefore, SBF magnitudes and colors are a valuable tool to break the age/metallicity degeneracy. Our initial results suggest that the most luminous stellar populations of bright cluster galaxies have roughly solar metallicities and about a factor of three spread in age.Comment: Astrophysical Journal, in press (uses Apr 20, 2000 version of emulateapj5.sty). Reposted version has a minor cosmetic change to Table

    Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters

    Full text link
    We present a new approach to constrain galaxy physical parameters from the combined interpretation of stellar and nebular emission in wide ranges of observations. This approach relies on the Bayesian analysis of any type of galaxy spectral energy distribution using a comprehensive library of synthetic spectra assembled using state-of-the-art models of star formation and chemical enrichment histories, stellar population synthesis, nebular emission and attenuation by dust. We focus on the constraints set by 5-band photometry and low- and medium-resolution spectroscopy at optical rest wavelengths on a set of physical parameters characterizing the stars and the interstellar medium. Since these parameters cannot be known a priori for any galaxy sample, we assess the accuracy to which they can be retrieved by simulating `pseudo-observations' using models with known parameters. Assuming that these models are good approximations of true galaxies, we find that the combined analysis of stellar and nebular emission in low-resolution galaxy spectra provides valuable constraints on all physical parameters. At higher resolution, the analysis of the combined stellar and nebular emission in 12,660 SDSS star-forming galaxies using our approach yields likelihood distributions of stellar mass, gas-phase oxygen abundance, optical depth of the dust and specific star formation rate similar to those obtained in previous separate analyses of the stellar and nebular emission at the original (twice higher) SDSS spectral resolution. We show that the constraints derived on galaxy physical parameters from these different types of observations depend sensitively on signal-to-noise ratio. Our approach can be extended to the analysis of any type of observation across the wavelength range covered by spectral evolution models. [abridged]Comment: 24 pages, 19 figures, accepted for publication in MNRAS. Full-resolution version available from ftp://ftp.iap.fr/pub/from_users/pacifici/paper_pacifici_hr.pd

    Extracting Star Formation Histories from Medium-resolution Galaxy Spectra

    Full text link
    We adapt an existing data compression algorithm, MOPED, to the extraction of median-likelihood star formation (SF) histories from medium-resolution galaxy spectra. By focusing on the high-pass components of galaxy spectra, we minimize potential uncertainties arising from the spectro-photometric calibration and intrinsic attenuation by dust. We validate our approach using model high-pass spectra of galaxies with different SF histories covering the wavelength range 3650-8500 A at a resolving power of about 2000. We show that the method can recover the full SF histories of these models, without prior knowledge of the metallicity, to within an accuracy that depends sensitively on signal-to-noise ratio. The investigation of the sensitivity of the flux at each wavelength to the mass fraction of stars of different ages allows us to identify new age-sensitive features in galaxy spectra. We also highlight a fundamental limitation in the recovery of the SF histories of galaxies for which the optical signatures of intermediate-age stars are masked by those of younger and older stars. We apply this method to derive average SF histories from the highest-quality spectra of morphologically identified early- and late-type galaxies in the SDSS EDR [...]. We also investigate the constraints set by the high-pass signal in the stacked spectra of a magnitude-limited sample of SDSS-EDR galaxies on the global SF history of the Universe. We confirm that the stellar populations in the most massive galaxies today appear to have formed on average earlier than those in the least massive ones. Our results do not support the recent suggestion of a statistically significant peak in the SF activity of the Universe at redshifts below unity, although such a peak is not ruled out [abridged].Comment: 18 pages, 14 figures, to appear in MNRAS; version with full resolution figures available at http://www.mpa-garching.mpg.de/~charlot/SFH
    corecore